skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Flynn, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 1, 2026
  2. Abstract. Ammonia and amines play critical roles in secondary aerosol formation, especially in urban environments. However, fast measurements of ammonia and amines in the atmosphere are very scarce. We measured ammonia and amines with a chemical ionization mass spectrometer (CIMS) at the urban center in Houston, Texas, the fourth most populated urban site in the United States, during October 2022. Ammonia concentrations were on average four parts per billion by volume (ppbv), while the concentration of an individual amine ranged from several parts per trillion by volume (pptv) to hundreds of pptv. These reduced nitrogen compounds were more abundant during weekdays than on weekends and correlated with measured CO concentrations, implying they were mostly emitted from pollutant sources. Both ammonia and amines showed a distinct diurnal cycle, with higher concentrations in the warmer afternoon, indicating dominant gas-to-particle conversion processes taking place with the changing ambient temperatures. Studies have shown that dimethylamine is critical for new particle formation (NPF) in the polluted boundary layer, but currently there are no amine emission inventories in global climate models (as opposed to ammonia). Our observations made in the very polluted area of Houston, as well as a less polluted site (Kent, Ohio) from our previous study (You et al., 2014), indicate there is a consistent ratio of dimethylamine over ammonia at these two sites. Thus, our observations can provide a relatively constrained proxy of dimethylamine using 0.1 % ammonia concentrations at polluted sites in the United States to model NPF processes. 
    more » « less
  3. Abstract. The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2)radicals play important roles in atmospheric chemistry. In the presence ofnitrogen oxides (NOx), reactions between OH and volatile organiccompounds (VOCs) can initiate a radical propagation cycle that leads to theproduction of ozone and secondary organic aerosols. Previous measurements ofthese radicals under low-NOx conditions in forested environmentscharacterized by emissions of biogenic VOCs, including isoprene andmonoterpenes, have shown discrepancies with modeled concentrations. During the summer of 2016, OH, HO2, and RO2 radical concentrationswere measured as part of the Program for Research on Oxidants:Photochemistry, Emissions, and Transport – Atmospheric Measurements ofOxidants in Summer (PROPHET-AMOS) campaign in a midlatitude deciduousbroadleaf forest. Measurements of OH and HO2 were made by laser-inducedfluorescence–fluorescence assay by gas expansion (LIF-FAGE) techniques,and total peroxy radical (XO2) mixing ratios were measured by the Ethane CHemical AMPlifier (ECHAMP) instrument. Supporting measurements ofphotolysis frequencies, VOCs, NOx, O3, and meteorological datawere used to constrain a zero-dimensional box model utilizing either theRegional Atmospheric Chemical Mechanism (RACM2) or the Master ChemicalMechanism (MCM). Model simulations tested the influence of HOxregeneration reactions within the isoprene oxidation scheme from the LeuvenIsoprene Mechanism (LIM1). On average, the LIM1 models overestimated daytimemaximum measurements by approximately 40 % for OH, 65 % for HO2,and more than a factor of 2 for XO2. Modeled XO2 mixing ratioswere also significantly higher than measured at night. Addition of RO2 + RO2 accretion reactions for terpene-derived RO2 radicals tothe model can partially explain the discrepancy between measurements andmodeled peroxy radical concentrations at night but cannot explain thedaytime discrepancies when OH reactivity is dominated by isoprene. Themodels also overestimated measured concentrations of isoprene-derivedhydroxyhydroperoxides (ISOPOOH) by a factor of 10 during the daytime,consistent with the model overestimation of peroxy radical concentrations.Constraining the model to the measured concentration of peroxy radicalsimproves the agreement with the measured ISOPOOH concentrations, suggestingthat the measured radical concentrations are more consistent with themeasured ISOPOOH concentrations. These results suggest that the models maybe missing an important daytime radical sink and could be overestimating therate of ozone and secondary product formation in this forest. 
    more » « less
  4. The eruption of the Hunga Tonga–Hunga Ha’apai volcano on 15 January 2022 offered a good opportunity to explore the early impacts of tropical volcanic eruptions on stratospheric composition. Balloon-borne observations near Réunion Island revealed the unprecedented amount of water vapor injected by the volcano. The enhanced stratospheric humidity, radiative cooling, and expanded aerosol surface area in the volcanic plume created the ideal conditions for swift ozone depletion of 5% in the tropical stratosphere in just 1 week. The decrease in hydrogen chloride by 0.4 parts per million by volume (ppbv) and the increase in chlorine monoxide by 0.4 ppbv provided compelling evidence for chlorine activation within the volcanic plume. This study enhances our understanding of the effect of this unusual volcanic eruption on stratospheric chemistry and provides insights into possible chemistry changes that may occur in a changing climate. 
    more » « less
  5. Heparan sulfate (HS) glycosaminoglycans are widely expressed on the mammalian cell surfaces and extracellular matrices and play important roles in a variety of cell functions. Studies on the structure–activity relationships of HS have long been hampered by the challenges in obtaining chemically defined HS structures with unique sulfation patterns. Here, we report a new approach to HS glycomimetics based on iterative assembly of clickable disaccharide building blocks that mimic the disaccharide repeating units of native HS. Variably sulfated clickable disaccharides were facilely assembled into a library of mass spec-sequenceable HS-mimetic oligomers with defined sulfation patterns by solution-phase iterative syntheses. Microarray and surface plasmon resonance (SPR) binding assays corroborated molecular dynamics (MD) simulations and confirmed that these HS-mimetic oligomers bind protein fibroblast growth factor 2 (FGF2) in a sulfation-dependent manner consistent with that of the native HS. This work established a general approach to HS glycomimetics that can potentially serve as alternatives to native HS in both fundamental research and disease models. 
    more » « less
  6. Abstract A multi-agency succession of field campaigns was conducted in southeastern Texas during July 2021 through October 2022 to study the complex interactions of aerosols, clouds and air pollution in the coastal urban environment. As part of the Tracking Aerosol Convection interactions Experiment (TRACER), the TRACER- Air Quality (TAQ) campaign the Experiment of Sea Breeze Convection, Aerosols, Precipitation and Environment (ESCAPE) and the Convective Cloud Urban Boundary Layer Experiment (CUBE), a combination of ground-based supersites and mobile laboratories, shipborne measurements and aircraft-based instrumentation were deployed. These diverse platforms collected high-resolution data to characterize the aerosol microphysics and chemistry, cloud and precipitation micro- and macro-physical properties, environmental thermodynamics and air quality-relevant constituents that are being used in follow-on analysis and modeling activities. We present the overall deployment setups, a summary of the campaign conditions and a sampling of early research results related to: (a) aerosol precursors in the urban environment, (b) influences of local meteorology on air pollution, (c) detailed observations of the sea breeze circulation, (d) retrieved supersaturation in convective updrafts, (e) characterizing the convective updraft lifecycle, (f) variability in lightning characteristics of convective storms and (g) urban influences on surface energy fluxes. The work concludes with discussion of future research activities highlighted by the TRACER model-intercomparison project to explore the representation of aerosol-convective interactions in high-resolution simulations. 
    more » « less
    Free, publicly-accessible full text available August 4, 2026
  7. The FireFlux II experiment was conducted in a tall grass prairie located in south-east Texas on 30 January 2013 under a regional burn ban and high fire danger conditions. The goal of the experiment was to better understand micrometeorological aspects of fire spread. The experimental design was guided by the use of a coupled fire–atmosphere model that predicted the fire spread in advance. Preliminary results show that after ignition, a surface pressure perturbation formed and strengthened as the fire front and plume developed, causing an increase in wind velocity at the fire front. The fire-induced winds advected hot combustion gases forward and downwind of the fire front that resulted in acceleration of air through the flame front. Overall, the experiment collected a large set of micrometeorological, air chemistry and fire behaviour data that may provide a comprehensive dataset for evaluating and testing coupled fire–atmosphere model systems. 
    more » « less
  8. null (Ed.)
    Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) kinetics remain understudied, including the impact of remdesivir. In hospitalized individuals, peak sputum viral load occurred in week 2 of symptoms, whereas viremia peaked within 1 week of symptom-onset, suggesting early systemic seeding of SARS-CoV-2. Remdesivir treatment was associated with faster viral decay. 
    more » « less